

Calculation Examples

The following pages will demonstrate the capabilities of *vKalc* through a series of short and varied calculations.

The final calculation is much more detailed and demonstrates the complete design of a reinforced concrete beam.

Contents

Compound Interest Calculation	- page 3
Day Trading Calculation	- page 3
Terminal Velocity Calculation	- page 4
Projectile Motion Calculation	- page 4
Length of a Clock Pendulum Calculation	- page 5
Roundabout Calculation	- page 5
Simple pH Calculations	- page 6
Chemical Equation Notation	- page 6
Electric Circuit Calculation	- page 7 to page 8
Electromagnetic Force Calculation	- page 8
Reinforced Concrete Beam Design	- page 9 to page 15

compound interest Calculation	
Principal sum;	$P_i = 15000$ \$
Annual percentage rate (APR);	r = 4.875%
Compound monthly;	n = 12; times per year
Full term;	t _m = 7.5; years
Total amount accrued over term;	$A_{tm} = P_i \times (1 + r / n)^{(n \times tm)} = 21605$ \$
Total interest accrued over term;	$I_{tm} = A_{tm} - P_i = 6605$ \$
Day Trading Calculation	
Trading account fund;	$P_0 = 40000$ \$
Maximum risk on this trade;	risk = 1%
Available funds for this trade;	$P_t = P_0 \times risk = 400$ \$
Current stock price;	sp _{buy} = 15\$
Target sale price;	sp _{sell} = 19\$
Potential win per share;	win = $sp_{sell} - sp_{buy} = 4$
For a 2:1 <i>win:loss</i> risk;	loss = win / 2 = 2\$
Set stop loss;	$sp_{stop} = sp_{buy} - loss = 13$ \$

Mass of a tennis ball:	$m_{ball} = 58a$
Diameter of a tennis ball;	$D_{ball} = 6.70 \text{cm}$
Projected cross-sectional area;	$A_{ball} = \pi D_{ball}^2 / 4 = 35.3 \text{ cm}^2$
Drag coefficient (sphere);	$C_{drag} = 0.47$
Density of air;	$\rho_f = 1.204 \text{kg/m}^3$
Terminal velocity;	$v_T = \sqrt{(2 \times m_{ball} \times g_o / (C_{drag} \times \rho_f \times A_{ball}))} = 23.9 \text{m/s}$
ectile Motion Calculation	
Angle of cannon;	$\theta = 30^{\circ}$
Initial velocity;	$V_{i} = 150 m/s$
Initial horizontal velocity;	$V_{ix} = V_i \times \cos(\theta) = \underline{130}$ m/s
Initial vertital velocity;	$V_{iy} = V_i \times sin(\theta) = \frac{75}{2}m/s$
Time to reach maximum height;	$t_{max} = V_{iy}/g_o = 7.65$ s
Maximum height reached;	$h_{max} = V_{iy} \times t_{max} - (0.5 \times g_o \times t_{max}^2) = \underline{287}m$
Total time in the air;	$t_{total} = 2 \times t_{max} = \underline{15.3}s$
Range of cannon ball;	$R_{ball} = V_{ix} \times t_{total} = \underline{1987}m$

ngth of a Clock Pendulum Calculation	<u>n</u>	
For period;	$T_{p} = 2.0s$	
Pendulum length required;	$L = T_p^2 \times g_o / 4\pi^2 = 994mm$	
undabout Calculation		
Speed of roundbout;	$v_{max} = 3.0 m/s$	
Mass of child;	$m_{ch} = 26 kg$	
Distance of child from center;	$r_{ch} = 3m$	
Centripedal acceleration;	$a_{cp} = v_{max}^2 / r_{ch} = \underline{3}m/s^2$	
Centripedal force;	$F_{cp} = m_{ch} \times a_{cp} = \underline{78}N$	
Weight of child;	$F_{ch} = m_{ch} \times g_o = \frac{255}{N}$	
Ratio;	$F_{cp} / F_{ch} = 30.6\%$	

For a weak acid	
Hydrogen ion concentration;	H ⁺ = 1.4e-5;mol
	(Note, the semicolon placed between the number and the unit, as the unit is not needed for the subsequent calculation)
	$pH = -log(H^+) = 4.85$
<i>For a concentrated acid</i> Hydrogen ion concentration;	H ⁺ = 0.035mol
	$pH = -log(H^+ \times mol^{(-1)}) = 1.46$
<i>Check in reverse from a pH value</i> pH value of liquid;	pH = 8.48
Hydrogen ion concentration;	$H^+ = 10^{(-pH)} = 3.31e-09$
	(Note, the solver will ignore superscripts ending in '+' or '-')
mical Equation Notation	
$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$	
$3Hg(OH)^2 + 2H_3PO_4 \rightarrow Hg_3(PO_4)_2 + Hg_3(PO_4)_$	6H ₂ O
$H_2O + HCI \rightleftharpoons H_3O^+ + CI^{(-)}$	
$H_2O + NH_3 \rightleftharpoons NH_4^+ + OH^{(-)}$	
$AI_2O_3 + 6H_3O^+ + 3H_2O \rightarrow 2(AI(OH_2)_6)$) ³⁺

Voltage drop across R ₂ ;	$V_{R2} = I_{R2} \times R_2 = 40 V$	
Voltage drop across R ₃ ;	$V_{R3} = I_{R3} \times R_3 = 40 V$	
Total power consumed;	$P_{T} = V_{s} \times I_{T} = \underline{500}W$	
Power dissipated by resistor;	$P_{R1} = V_{R1} \times I_T = 300 W$	
	$P_{R2} = V_{R2} \times I_{R2} = \underline{40}W$	
	$P_{R3} = V_{R3} \times I_{R3} = \underline{160}W$	
tromagnetic Force Calculation		
Magnetic constant;	$\mu_0 = 4\pi \times 10^{(-7)}$ H/m	
Electric current through solenoid;	$I_{sol} = 1.5A$	
Number of turns on solenoid;	N _{sol} = 550;turns	
Diameter of solenoid;	D _{sol} = 16mm	
Area of solenoid;	$A_{sol} = \pi D_{sol}^2 / 4 = 201 \text{mm}^2$	
Diameter of armature;	$D_{arm} = 12mm$	
Gap between solenoid and armature;	$g_{ap} = (D_{sol} - D_{arm}) / 2 = 2mm$	
Electromagnetic force (on armature);	$F_{arm} = (N_{sol} \times I_{sol})^2 \times \mu_0 \times A_{sol} / 2g_{ap}^2 = \underline{21.5}N$	

Calculation Examples (v1.0)

Material Gelalis	
Density of concrete;	$\gamma_c = 25 kN/m^3$
Characteristic strength of concrete;	$f'_c = 40 \text{N/mm}^2$; (30MPa minimum)
	$f'_{c_{sqrt}} = \sqrt{(f'_{c})} \times \sqrt{(N/mm^{2})} = \frac{6.32}{N/mm^{2}}$
Elastic modulus;	$E_c = ((2500 \text{kg/m}^3) / (\text{kg/m}^3))^{1.5} \times 0.043 \times f'_{c_sqrt}$
	$E_{c} := 34 \text{kN/mm}^{2}$
Characteristic strength of reinf;	$f_y = 420 \text{N/mm}^2$
Elastic modulus;	$E_s = 200 \text{kN/mm}^2$
Modular ratio;	$\eta = E_{s} / E_{c} = 5.88$
Cover to rebar;	$c_{min} = 40 mm$
Beam section details	
Depth of beam;	h = 600mm
Width of beam;	b = 300mm
Span of beam;	L = 5000mm
Minimum depth as per ACI;	$h_{min} = L / 16 = 312 mm$
Dead load of beam;	$DL_{beam} = h \times b \times \gamma_c = 4.5 kN/m$

Floor Loads	
Floor loads;	$DL_{slab} = 2.45 kN/m^2$
	$DL_{screed} = 1.75 kN/m^2$
	$DL_{finishes} = 0.6 kN/m^2$
	DL _{services} = 0.3kN/m ² ; <i>(includes ceilings)</i>
	$DL_{partitions} = 3.0 \text{kN/m}^2$
Total dead load on floor;	$DL_{floor} = sum(DL_{slab}, DL_{screed}, DL_{finishes}, DL_{services}, DL_{partitions})$
	$DL_{floor} := \underline{8.1} kN/m^2$
Total live load on floor;	$LL_{floor} = 1.5 kN/m^2$
Total loading on 150mm floor;	$UDL_{floor} = DL_{floor} + LL_{floor} = 9.6 \text{kN/m}^2$
	$UDL_{floor_f} = 1.2 \times DL_{floor} + 1.6 \times LL_{floor} = \underline{12.1} kN/m^2$
From Analysis	
Loaded width of beam;	$b_{L} = 5000 mm$
Ultimate design moment;	$M_{u} = (DL_{beam_{f}} + b_{L} \times UDL_{floor_{f}}) \times L^{2} / 8 = \underline{206}kNm$
Ultimate design shear;	$V_u = (DL_{beam_f} + b_L \times UDL_{floor_f}) \times L / 2 = \underline{165}kN$

Check Bending	
Design moment;	$M_u := 206 kNm$
Area of steel provided;	$A_s = 4T25 = 1963$ mm ²
	$\Phi_{main} = 25mm; \Phi_{link} = 10mm$
Depth to tension steel;	$d = h - c_{min} - \Phi_{link} - \Phi_{main} / 2 = 538 mm$
Min area of steel;	$A_{s_{min}} = max(b \times d \times f'_{c_{sqrt}} / 4f_{y}, 1.4N/mm^{2} \times b \times d / f_{y})$
	$A_{s_{min}} := 607 \text{mm}^2$
Steel ratio;	$\rho = A_s / (b \times d) = 0.0122$
Depth of compression block;	$a = \rho \times f_y \times d / (0.85 \times f'_c) = \underline{80.8} \text{mm}$
Ratio;	$\beta_1 = \max(0.65, 0.85 - (0.05 \times (f'_c - 30N/mm^2) / 7N/mm^2)) = 0.779$
Depth to neutral axis;	$c = a / \beta_1 = 104 mm$
Net tensile strain;	$\epsilon_{t} = 0.003 \times (d - c) / c = 0.0125$
	Net tensile strain in tension controlled zone
Strength reduction factor;	$\Phi = \min(\max(0.65 + (\epsilon_t - 0.002) \times (250 / 3), 0.65), 0.9) = 0.9$
Nominal bending capacity;	$M_n = A_s \times f_y \times (d - a / 2) = \underline{410}kNm$
Permissable bending capacity;	$\Phi M_n = \Phi \times M_n = \underline{369} kNm$
	$if(\Phi M_n < M_u, Bending = "Fail", Bending = "Pass")$
	Bending := Pass

Check Shear	
Design shear force;	$V_{u} := 165 kN$
For normal weight concrete;	$\lambda = 1.0$
Shear reduction factor;	$\Phi = 0.75$
Nominal concrete shear strength;	$V_{c} = 0.17 \times \lambda \times f'_{c_{sqrt}} \times b \times d = \frac{173}{kN}$
Nominal rebar shear strength;	$V_{s} = max((V_{u} - (\Phi \times V_{c})) / \Phi, 0kN) = \underline{46.6}kN$
Max allowable rebar shear strength;	$V_{s_max} = 4 \times V_c = \underline{693} kN$
Where V_s exceeds $2V_c$ reduce the maxin	num link spacing by one-half
	$V_{s_limit} = 2 \times V_c = \underline{347}kN$
Max link spacing;	$s_{v_max} = 1.0 \times min(d / 2, 600mm) = 269mm$
Try spacing;	s _v = 200mm
Min area of shear steel required;	$A_{sv_{min}} = max(0.062 \times f'_{c_{sqrt}}, 0.35N/mm^2) \times b / f_y = 280mm^2/m$
Area of shear steel required;	$A_{sv_reqd} = max(V_s / (f_y \times d), A_{sv_min}) = \underline{280}mm^2/m$
Area of shear steel provided;	$A_{sv_{prov}} = 2T10@200mm = \frac{785}{2}mm^{2}/m$
	$if(A_{sv_reqd} > A_{sv_prov}, Shear = "Fail", Shear = "Pass")$
	Shear := <u>Pass</u>

Check Deflection	
Area of tension reinforcement;	$A_{s_tens} = A_s = \underline{1963} \text{mm}^2$
Tension reinforcement ratio;	ρ := <u>0.0122</u>
Depth to compression steel;	d' = 60mm
Area of compression reinforcement;	$A_{s_comp} = 0mm^2$
Compression reinforcement ratio;	$\rho' = A_{s_comp} / (b \times d) = \underline{0}$
Moment of inertia (gross);	$I_g = b \times h^3 / 12 = 540000 cm^4$
	$y_t = h / 2 = 300 mm$
For normal weight concrete;	$\lambda = 1.0$
Modulus of rupture;	$f_r = 0.62 \times \lambda \times f'_{c_sqrt} = \underline{3.92} N/mm^2$
Cracking moment;	$M_{cr} = f_r \times I_g / y_t = \underline{70.6} kNm$
Neutral axis depth factor;	$x_{na} = -\eta \times (\rho + \rho') + \sqrt{(\eta^2 \times (\rho + \rho')^2 + 2 \times \eta \times (\rho + d' \times \rho' / d))}$
	$x_{na} := 0.314$
Moment of inertia (cracked);	$I_{cr} = (x_{na}^3 / 3 + \eta \times \rho \times (1 - x_{na})^2 + \eta \times \rho' \times (x_{na} - d' / d)^2) \times b \times d^3$
	$I_{cr} := 205132 \text{cm}^4$
Service dead load moment;	$M_{D} = (DL_{beam} + b_{L} \times DL_{floor}) \times L^{2} / 8 = \underline{141}kNm$
Service live load moment;	$M_{L} = (b_{L} \times LL_{floor}) \times L^{2} / 8 = \underline{23.4} kNm$

Calculation Examples (v1.0)

Instantaneous deflections	
Moment factor;	$f_m = M_{cr} / M_D = 0.502$
Moment of inertia (effective);	if($f_m > 1$, $I_e = I_g$, $I_e = f_m^3 \times I_g + (1 - f_m^3) \times I_{cr})$
	$I_e := 247474 \text{ cm}^4$
Deflection due to dead load;	$\delta_{dead} = 5 \times L^2 \times M_D / (48 \times E_c \times I_e) = 4.35 \text{mm}$
Moment factor;	$f_m = M_{cr} / (M_D + M_L) = 0.43$
Moment of inertia (effective);	if($f_m > 1$, $I_e = I_g$, $I_e = f_m^3 \times I_g + (1 - f_m^3) \times I_{cr}$)
	$I_e := 231796 \text{cm}^4$
Deflection due to dead plus live;	$\delta_{total} = 5 \times L^2 \times (M_D + M_L) / (48 \times E_c \times I_e) = \underline{5.42}mm$
Movement after installation;	$\delta_{install} = \delta_{total} - \delta_{dead} = 1.07 \text{mm}$
Movement after installation limit;	$\delta_{\text{limit}} = L / 480 = 10.4 \text{mm}$
	$if(\delta_{limit} < \delta_{install}, Deflection = "Fail", Deflection = "Pass")$
	Deflection := <u>Pass</u>

Long term deflections	
Moment factor;	$f_m = M_{cr} / (M_D + 0.25 \times M_L) = 0.482$
Moment of inertia (effective);	if($f_m > 1$, $I_e = I_g$, $I_e = f_m^3 \times I_g + (1 - f_m^3) \times I_{cr}$)
	$I_e := 242593$ cm ⁴
Defl'n due to dead plus sust live;	$\delta_{sust} = 5 \times L^2 \times (M_D + 0.25 \times M_L) / (48 \times E_c \times I_e) = \underline{4.63}mm$
Load duration coefficients;	$\xi_{5years} = 2.0$
	$\xi_{12 \text{months}} = 1.4$
	$\xi_{6 \text{ months}} = 1.2$
	$\xi_{3 \text{ months}} = 1.0$
Time dependant multipliers;	$\lambda_{5years} = \xi_{5years} / (1 + 50 \times \rho') = \underline{2}$
	$\lambda_{12\text{months}} = \xi_{12\text{months}} / (1 + 50 \times \rho') = \underline{1.4}$
	$\lambda_{6 \text{months}} = \xi_{6 \text{months}} / (1 + 50 \times \rho') = 1.2$
	$\lambda_{3 \text{months}} = \xi_{3 \text{months}} / (1 + 50 \times \rho') = \underline{1}$
Long term movement;	$\delta_{LT} = \delta_{install} + (\lambda_{5years} \times \delta_{sust}) = \underline{10.3}mm$
Movement after install limit;	$\delta_{\text{limit}} = L / 480 = 10.4 \text{mm}$
	$if(\delta_{limit} < \delta_{LT}, Deflection = "Fail", Deflection = "Pass")$
	Deflection := Pass